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ABSTRACT. The “equation-free” approach has been proposed in recent years as a general
framework for developing multiscale methods for efficiently capturing the macroscale be-
havior of a system using only the microscale models. In this paper, we take a close look
at some of the algorithms proposed under the “equation-free” umbrella, the projective in-
tegrators and the patch dynamics. We discuss some very simple examples in the context
of the “equation-free” approach. These examples seem to indicate that while its general
philosophy is quite attractive and indeed similar to many other approaches in concurrent
multiscale modeling, there are severe limitations to the specific implementation proposed
by this approach.

1. INTRODUCTION

The purpose of this note is to examine some of the basic issuessurrounding the “equa-
tion-free” approach proposed in [17], which has been pursued in recent years as a general
tool for multiscale, multi-physics modeling. To begin with, the equation-free approach is
an example of concurrent coupling techniques. In contrast to sequential coupling tech-
niques which require establishing the macroscale equations through precomputing, con-
current coupling techniques compute the required macroscale quantities “on-the-fly” from
microscopic models [1, 2]. The most well-known example of such concurrent coupling
techniques is perhaps the Car-Parrinello molecular dynamics which computes the atomic
interaction forces “on-the-fly” by solving the electronic structure problem [5]. Other al-
gorithms, such as the extended multi-grid method [4] and theheterogeneous multiscale
method (HMM) [8] are all example of the concurrent coupling approach.

At a technical level, a key idea in the “equation-free” approach is to make use of scale
separation in the system. There are many different ways of exploiting scale separation.
In [6] and [5], time scale separation was used to artificiallyslow down the time scale of
the microscopic system. As for spatial scales, homogenization-based methods (such as
the ones that use representative averaging volumes [3]) andthe quasicontinuum methods
[16] are all examples of algorithms that explore the separation of spatial scales. Most
closely related to the “equation-free” approach is perhapsthe extended multi-grid method
[4]. In his review article [4], Achi Brandt described ideas that can be used to extend
multi-grid techniques to deal with multiscale, multi-physics problems in order to capture
the macroscale behavior of a system using microscopic models such as molecular dynam-
ics. As is common in multi-grid methods, the ideas of Brandt rely heavily on mapping
back and forth between the macro- and micro-states of the system, through prolongation
and restriction operators (which are called respectively reconstruction and compression
operators in HMM, and lifting and restriction operators in the “equation-free” approach).
Brandt realized that central to the efficiency of these algorithms is the possibility of only
performing microscopic simulations in small samples for short periods of times, as a result
of the scale separation in the system. These ideas are later adopted by both HMM and
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the “equation-free” approach. In fact, HMM and the “equation-free” approach are both
alternative approaches with the same motivation and objective.

Macro to micro micro to Macro
Extended multi-grid interpolation restriction
HMM reconstruction compression
Equation-free lifting restriction

While the general philosophy of the “equation-free” approach is very similar to the ex-
tended multi-grid method and HMM, the “equation-free” approach proposes its own ways
of implementing such a philosophy, in particular, ways of dealing with scale separation.
The basic idea is to use extrapolation in time and interpolation in space. More precisely,
two important building blocks of the “equation-free” approach are:

i) The projective integrators: (An ensemble of) the microscale problems are solved
for a short period of time using small time steps. The time derivative of the macro
variable is computed from the results of the last few steps and then used to advance
the macro variable over a macro time step. It is easy to see that such a procedure
amounts to extrapolation, and indeed the authors state in [13]: “The reader might
think that these should be called ‘extrapolation methods,’but that name has al-
ready been used [...]. Hence we call the proposed methods projective integration
methods.”

ii) The gap-tooth scheme: The microscopic problem is solvedin small domains (the
teeth) separated by large gaps. The solution is averaged over each domain and
then interpolated to give the prediction over the gaps.

The combination of these two ideas gives directly the so-called “patch dynamics” [17].
Detailed understanding of the “equation-free” algorithmsis made difficult by the fact

that the “equation-free” papers are generally quite vague.The present note should be re-
garded as an attempt to pin down some of these details. Indeedthis was initially intended
as a regular journal article. But it soon becomes clear that there is still substantial disagree-
ment between our understanding of the “equation-free” approach and that of its developers.
However, we believe the simple examples that we discuss heredo shed some light on the
“equation-free” approach and should be made available to a larger audience in some form.
We are grateful to Yannis Kevrekidis for a detailed report onthe earlier version of this
note. Some of his comments have been taken into account in this revised version. We
also welcome any discussion about the issues raised in this note, the most important of
which being: What really is the “equation-free” approach? Indeed our primary purpose of
presenting this note is to prompt such a discussion.

2. PROJECTIVE INTEGRATORS FOR STOCHASTICODES

Projective integrators were proposed as a way of extrapolating the solution of an explicit
ODE solver for systems with multiple time scales using largetime steps. The basic idea
is to run the microscopic solver (using small time steps) fora number of steps, and then
estimate the time derivative and use that to extrapolate thesolution over a large time step
[13]. For stiff ODEs, the extrapolation step is applied to the whole system [13]. For general
multiscale problems, the extrapolation step is applied only to the slow variables [17, 15].

In the case of stiff ODEs, projective integrators can give rise to useful numerical sche-
mes, as was demonstrated in [13]. In this case, the idea becomes very close to the ones
proposed by Erikssonet. al for developing explicit stiff ODE solvers [12]. The objectives
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of the two papers are quite different: For Erikssonet al., the objective is to find explicit and
efficient stiff ODE solvers. For Gearet al., the objective is to deal with general multiscale,
multi-physics problems. However, in the general case such as the case considered in [15],
projective integrators have serious limitations, as we nowshow.

Denote byx the coarse variable of the system. The coarse projective integrators pro-
posed in [15] performs the following steps at each macro timestep (of size∆t):

i) Create an ensemble ofN microscopic initial conditions consistent with the known
coarse variablexn at time stepn.

ii) Run the microscopic solver with these initial conditions for a number of steps,
sayk, with time stepδt. Denote the corresponding values of the coarse variables
asx̃j(kδt) wherej = 1, . . . , N .

iii) Perform ensemble averaging to get an approximation to the coarse variable. For
example,

(1) x̄ =
1

N

N∑

j=1

x̃j(kδt)

iv) Use this value to extrapolate the coarse variable to a time step of size∆t.

(2) xn+1 = xn + ∆t
x̄ − xn

kδt

Now consider the simple case when the coarse variable obeys effectively a stochastic
ODE:

(3) dx(t) = b(x(t))dt + dW (t)

Since, toO(kδt), we have

(4) x̃j(kδt) − xn = kδt b(xn) +
√

kδt ξn
j

where{ξn
j }, j = 1, · · · , N areN independent Gaussian variables with mean 0 and vari-

ance 1, (2) becomes, to leading order

(5) xn+1 = xn + ∆t b(xn) +
∆t√
kδt

1

N

N∑

j=1

ξn
j .

(5) is equivalent in law to

(6) xn+1 = xn + ∆t b(xn) +
∆t√
Nkδt

ξn,

whereξn is a Gaussian variable with mean 0 and variance 1.
It is obvious from this that the effective dynamics producedby the coarse projective

integrator depends on the numerical parametersN , k, δt, and∆t. In particular, ifNkδt ≫
∆t, then the noise term in (3) is lost in the limit. IfNkδt ≪ ∆t, then the noise term
overwhelms the drift term. In either case, one obtains a wrong prediction for the effective
dynamics of the coarse variable.

The only way to get a scheme consistent with (3) is to choose the numerical parameters
so that they precisely satisfyNkδt = ∆t. The reader should be aware, however, that this
choice is not advocated in [15] and is, in fact, quite orthogonal to the original equation-free
philosophy since it requires knowing beforehand that (3) isan SODE and not something
else. In addition, it is easy to see that usingNkδt = ∆t leads to no gain in efficiency: The
total cost is comparable to solving the microscopic problemin a brute force fashion using
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δt as the time step, since the size of the ensemble is equal to thenumber of microscopic
simulation time intervals during a time duration of∆t: N = ∆t/(kδt).

For the case whenNkδt ≫ ∆t, one might think of using the coarse projective integra-
tors (or coarse molecular dynamics) as a way of simulating the dynamicsdx/dt = b(x)
in the context of molecular dynamics simulations. In this case the unknown driftb(x) is
related to the gradient of the free energy and simulatingdx/dt = b(x) is then a way to
explore this free energy. Indeed, this appears to be how the scheme was actually used in
[15]. The problem, however, is that usingNkδt ≫ ∆t leads again to a scheme which is
no less expensive than a brute force solution ofN replica of (3) usingδt as the time step.

The problem above seems to be intrinsic to projective integrators in the context of SDEs
because it is inherent to the fact that the dynamics (3) is dominated by the noise on short
time scales and the extrapolation step in the projective integrators amplifies these fluctua-
tions. Averaging them out can only be done at a cost which is atleast comparable to the
cost of a direct scheme.

3. PATCH DYNAMICS

Patch dynamics is proposed as a way of analyzing the macroscopic dynamics of a
system using microscopic models. Like the extended multi-grid methods [4] and HMM
[8, 11], it is formulated in such a way that scale separation can be exploited to reduce
computational cost.

The setup is as follows. We have a macroscale grid over the computational domain. The
grid size∆x is chosen to resolve the macroscale variations but not the microscale features
in the problem. Each grid point is surrounded by a small domain (the “tooth”), the size of
which (denoted byh) should be large enough to sample the local microscale variations but
can be much smaller than the macroscale grid size if the macroand microscales are very
much separated.

Given a set of macroscale values at the macroscale grid points,{Un
j }, at then-th time

steptn = n∆t where∆t is the size of the macroscale time step, patch dynamics computes
the update of these values at the next macroscale time step,{Un+1

j }, using the following
procedure:

i) Lifting: From{Un
j }, reconstruct a consistent microscopic initial data, denoted by

ũ0.
ii) Evolution:Solve the original microscopic model with this initial dataũ0 over the

small domains (the “teeth”) for some timeδt: ũδt = Sδtũ0.
iii) Restriction: Average the microscale solutioñuδt over the small domains. The

results are denoted by{Ũn
δt}.

iv) Extrapolation:Compute the approximate derivative and use it to predict{Un+1

j }:

(7) Un+1 = Un + ∆t
Ũn

δt − Un

δt

or more generally:

(8) Un+1 = Un + ∆t
Ũn

δt − Ũn
αδt

(1 − α)δt

whereα is some numerical parameter between 0 and 1.

There are very few examples of how to implement these steps inpractice. [17, 24]
suggest the following:
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For the lifting operator, in the small domain around the macro grid pointxj , use the
approximate Taylor expansion:

(9) ũ0(x) =

d∑

k=0

1

k!
Dk(x − xj)

k

HereDk is some approximations to the derivatives of the macroscaleprofile atxj , for
example:

(10) D2 =
Un

j+1 − 2Un
j + Un

j−1

∆x2
, D1 =

Un
j+1 − Un

j−1

2∆x
, D0 = Un

j − 1

24
h2D2

Below we will consider the case whend = 2.
When solving the microscale problem, [24] suggest extending the microscale domain to

include some buffer regions in the hope that this would allowthe use ofanyboundary con-
ditions for the microscopic solver: By choosing sufficiently large buffers, the effect would
be as if the microscale problem is solved in the whole space where and when averaging is
performed. This introduces another spatial scaleH which is the real size of the region on
which microscale problems are solved. (The parameterh, which is (much) smaller thanH ,
is the size of the domain over which averaging is performed).In the following discussion,
we will takeH to be infinity.

Let us now examine this algorithm in more detail, using some very simple examples.
Let us first consider the heat equation

(11) ∂tu = ∂2
xu

For simplicity, let us assumexj = 0. Denoteũ0 = D0 + D1x + 1

2
D2x

2. We have

(12) Sδtũ0(x) = D0 + D1x + D2(
1

2
x2 + δt)

Denote byAh the averaging operator over the small domain (of sizeh), we have

(13) Ũn
δt = AhSδtũ0(x) = D0 + D2δt +

1

24
D2h

2 = Un + D2δt

Inserting this expression in (7) gives the familiar scheme:

(14) Un+1 = Un + ∆tD2

as was shown in [17]. This is both stable and consistent with the heat equation, which is
the right effective model at the large scale.

Now let us turn to the advection equation

(15) ∂tu + ∂xu = 0

In this case, we have

(16) Sδtũ0(x) = D0 + D1(x − δt) +
1

2
D2(x − δt)2

Hence,

(17) Ũn
δt = AhSδtũ0(x) = D0 −D1δt +

1

2
D2δt

2 +
1

24
D2h

2 = Un −D1δt +
1

2
D2δt

2

and (7) becomes

(18) Un+1 = Un + ∆t(−D1 +
1

2
δtD2)
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Sinceδt ≪ ∆t, the last term is much smaller than the other terms, and we areleft essen-
tially with a scheme which is unstable under the standard CFLcondition that∆t ∼ ∆x:

(19) Un+1 = Un − ∆tD1

due to the central character ofD1.
Aside from the stability issue, there can also be problems with consistency. Consider

the following example:

(20) ∂tu = −∂4
xu

The macroscale model is obviously the same model. However, it is easy to see that if we
follow the patch dynamics procedure withd = 2, we would be solving∂tU = 0, which is
obviously inconsistent with the correct macroscale model.

For these simple examples, the difficulties discussed abovecan be fixed by using dif-
ferent reinitialization procedure for the micro-solvers.For the example of the convection
equation, one should use one-sided interpolation schemes in the spirit of upwind schemes.
For the last example, one should use piecewise4th order polynomial interpolation.But
in general, finding such a reinitialization procedure seemsto be quite a daunting task,
since it depends on the nature of the unknown effective macroscale model. Imagine that
the microscopic solver is molecular dynamics. The reinitialization procedure has to take
into account not only consistency with the local macrostates of the system (which is the
only requirement for the extended multi-grid method and HMM), but also the effective
macroscale scale model (which is unknown) such as:

i) The order of the macroscale equation.
ii) The direction of the wind, if the effective macroscale equation turns out to be a

first order PDE.
iii) Other unforeseeable factors.

Indeed it is not at all clear how patch dynamics would work if molecular dynamics models
are used to model macroscopic gas dynamics.

4. CONCLUSIONS

The idea of interrogating legacy codes as a control system isvery attractive and to some
extend, has already been commonly used in some disciplines.For example, chemists use
packages such as CHARMM and AMBER as legacy codes to perform optimization tasks,
e.g. to find free energy surfaces and minimum free energy paths. Optimization techniques
such as the Nelder-Mead algorithm that use only function values (not the derivatives) were
designed with this kind of problems in mind. One purpose of the work of Kelleret al. is
to extend bifurcation analysis tools to systems that are defined by legacy codes [25]. The
“equation-free” approach attempts to extend such practices to another direction, namely
the modeling of macroscale spatial/temporal dynamics of systems defined by microscopic
models, in the form of legacy codes. While this seems very attractive, the set of tools pro-
posed under this umbrella are quite far from being sufficientfor reaching this objective. We
have discussed some of the technical difficulties in this note. This discussion is certainly
not exhaustive. It is only meant to be illustrative.
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