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ABSTRACT. The “equation-free” approach has been proposed in reeamsyas a general
framework for developing multiscale methods for efficigradhpturing the macroscale be-
havior of a system using only the microscale models. In thjsep, we take a close look
at some of the algorithms proposed under the “equatiori-freerella, the projective in-
tegrators and the patch dynamics. We discuss some veryesempmples in the context
of the “equation-free” approach. These examples seem toatadthat while its general
philosophy is quite attractive and indeed similar to marfyeotapproaches in concurrent
multiscale modeling, there are severe limitations to trex#jec implementation proposed
by this approach.

1. INTRODUCTION

The purpose of this note is to examine some of the basic issuesunding the “equa-
tion-free” approach proposed in [17], which has been putsueecent years as a general
tool for multiscale, multi-physics modeling. To begin withe equation-free approach is
an example of concurrent coupling techniques. In cont@aseguential coupling tech-
nigues which require establishing the macroscale equatlfmough precomputing, con-
current coupling techniques compute the required macl®sceantities “on-the-fly” from
microscopic models [1, 2]. The most well-known example affsaoncurrent coupling
techniques is perhaps the Car-Parrinello molecular dyceamhich computes the atomic
interaction forces “on-the-fly” by solving the electronicusture problem [5]. Other al-
gorithms, such as the extended multi-grid method [4] andhiiterogeneous multiscale
method (HMM) [8] are all example of the concurrent couplipgeoach.

At a technical level, a key idea in the “equation-free” agmiois to make use of scale
separation in the system. There are many different ways pib#ing scale separation.
In [6] and [5], time scale separation was used to artificialpw down the time scale of
the microscopic system. As for spatial scales, homogenizdtased methods (such as
the ones that use representative averaging volumes [3])henguasicontinuum methods
[16] are all examples of algorithms that explore the separadf spatial scales. Most
closely related to the “equation-free” approach is perltapextended multi-grid method
[4]. In his review article [4], Achi Brandt described idedst can be used to extend
multi-grid techniques to deal with multiscale, multi-piggsproblems in order to capture
the macroscale behavior of a system using microscopic mateh as molecular dynam-
ics. As is common in multi-grid methods, the ideas of Bramdy heavily on mapping
back and forth between the macro- and micro-states of thtersyshrough prolongation
and restriction operators (which are called respectivebponstruction and compression
operators in HMM, and lifting and restriction operatorslie t'equation-free” approach).
Brandt realized that central to the efficiency of these allgors is the possibility of only
performing microscopic simulations in small samples farsperiods of times, as a result
of the scale separation in the system. These ideas are thpteal by both HMM and
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the “equation-free” approach. In fact, HMM and the “equiatfoee” approach are both
alternative approaches with the same motivation and diagect

Macro to micro| micro to Macro
Extended multi-grid interpolation restriction
HMM reconstruction | compression
Equation-free lifting restriction

While the general philosophy of the “equation-free” apptos very similar to the ex-
tended multi-grid method and HMM, the “equation-free” apgich proposes its own ways
of implementing such a philosophy, in particular, ways odlidey with scale separation.
The basic idea is to use extrapolation in time and interpoiein space. More precisely,
two important building blocks of the “equation-free” appoh are:

i) The projective integrators: (An ensemble of) the micedegroblems are solved
for a short period of time using small time steps. The timévdéwe of the macro
variable is computed from the results of the last few stepdlaen used to advance
the macro variable over a macro time step. It is easy to séestich a procedure
amounts to extrapolation, and indeed the authors state3jn [Ihe reader might
think that these should be called ‘extrapolation metholst that name has al-
ready been used [...]. Hence we call the proposed methodsqtiee integration
methods”

i) The gap-tooth scheme: The microscopic problem is solmesall domains (the
teeth) separated by large gaps. The solution is averagedeaed domain and
then interpolated to give the prediction over the gaps.

The combination of these two ideas gives directly the steddpatch dynamics” [17].

Detailed understanding of the “equation-free” algoritimsade difficult by the fact
that the “equation-free” papers are generally quite vague present note should be re-
garded as an attempt to pin down some of these details. Iridsadas initially intended
as aregular journal article. But it soon becomes clear teattis still substantial disagree-
ment between our understanding of the “equation-free”@ggr and that of its developers.
However, we believe the simple examples that we discussdeesbed some light on the
“equation-free” approach and should be made availableadoget audience in some form.
We are grateful to Yannis Kevrekidis for a detailed reporttioa earlier version of this
note. Some of his comments have been taken into accountsrahised version. We
also welcome any discussion about the issues raised in diés the most important of
which being: What really is the “equation-free” approach@ded our primary purpose of
presenting this note is to prompt such a discussion.

2. PROJECTIVE INTEGRATORS FOR STOCHASTIODES

Projective integrators were proposed as a way of extraipgltte solution of an explicit
ODE solver for systems with multiple time scales using laie steps. The basic idea
is to run the microscopic solver (using small time steps)afoumber of steps, and then
estimate the time derivative and use that to extrapolatedhdion over a large time step
[13]. For stiff ODEs, the extrapolation step is applied te trhole system [13]. For general
multiscale problems, the extrapolation step is appliegt tmthe slow variables [17, 15].

In the case of stiff ODES, projective integrators can gige to useful numerical sche-
mes, as was demonstrated in [13]. In this case, the idea leexweny close to the ones
proposed by Erikssoet. alfor developing explicit stiff ODE solvers [12]. The objeats



SOME CRITICAL ISSUES FOR THE “EQUATION-FREE” APPROACH 3

of the two papers are quite different: For Erikssb@l., the objective is to find explicit and
efficient stiff ODE solvers. For Geat al., the objective is to deal with general multiscale,
multi-physics problems. However, in the general case sachecase considered in [15],
projective integrators have serious limitations, as we sbaw.

Denote byz the coarse variable of the system. The coarse projectiegrators pro-
posed in [15] performs the following steps at each macro stap (of sizeAt):

i) Create an ensemble &f microscopic initial conditions consistent with the known
coarse variable™ at time step.

i) Run the microscopic solver with these initial condit®for a number of steps,
sayk, with time stepdt. Denote the corresponding values of the coarse variables
asz;(két) wherej =1,..., N.

iii) Perform ensemble averaging to get an approximatiorh&doarse variable. For

example,
N
1) Z (kot)
iv) Use this value to extrapolate the coarse variable to a stap of size\t.
2 ntl - AT
(2) " x4 ot

Now consider the simple case when the coarse variable olfiegsieely a stochastic
ODE:

(3) dx(t) = b(z(t))dt + dW (t)

Since, toO(kdt), we have

(4) i;(kot) — 2" = kotb(a") + Vkot £}

where{¢?},j = 1,---, N are N independent Gaussian variables with mean 0 and vari-

ance 1, (2) becomes, to leading order

N
(5) " =" + Atb —
)¢ e
(5) is equivalent in law to
At
6 n+1: n+Atb n + 'rL7
©) T =R AN+

wheref™ is a Gaussian variable with mean 0 and variance 1.

It is obvious from this that the effective dynamics produbgdthe coarse projective
integrator depends on the numerical parameters, ét, andAt. In particular, it N kdt >
At, then the noise term in (3) is lost in the limit. Nkdt < At, then the noise term
overwhelms the drift term. In either case, one obtains a gpmediction for the effective
dynamics of the coarse variable.

The only way to get a scheme consistent with (3) is to choasatimerical parameters
so that they precisely satisfy kot = At. The reader should be aware, however, that this
choice is not advocated in [15] and is, in fact, quite orthwagdo the original equation-free
philosophy since it requires knowing beforehand that (ZnsSODE and not something
else. In addition, it is easy to see that usifigot = At leads to no gain in efficiency: The
total cost is comparable to solving the microscopic probieim brute force fashion using
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ot as the time step, since the size of the ensemble is equal tuthber of microscopic
simulation time intervals during a time duration&f: N = At/(kdt).

For the case wheWkdt > At, one might think of using the coarse projective integra-
tors (or coarse molecular dynamics) as a way of simulatiegdymamicsiz/dt = b(x)
in the context of molecular dynamics simulations. In thisecthe unknown drift(x) is
related to the gradient of the free energy and simulatingit = b(z) is then a way to
explore this free energy. Indeed, this appears to be howctiense was actually used in
[15]. The problem, however, is that usidgkdt > At leads again to a scheme which is
no less expensive than a brute force solutioVofeplica of (3) usingyt as the time step.

The problem above seems to be intrinsic to projective iatiegs in the context of SDEs
because it is inherent to the fact that the dynamics (3) isidated by the noise on short
time scales and the extrapolation step in the projectivagiattors amplifies these fluctua-
tions. Averaging them out can only be done at a cost which liseat comparable to the
cost of a direct scheme.

3. PATCH DYNAMICS

Patch dynamics is proposed as a way of analyzing the magigsdgnamics of a
system using microscopic models. Like the extended muidi-gnethods [4] and HMM
[8, 11], it is formulated in such a way that scale separatiam lbe exploited to reduce
computational cost.

The setup is as follows. We have a macroscale grid over thgatational domain. The
grid sizeAz is chosen to resolve the macroscale variations but not thmstale features
in the problem. Each grid point is surrounded by a small dor(thie “tooth”), the size of
which (denoted by:) should be large enough to sample the local microscaleti@rsbut
can be much smaller than the macroscale grid size if the nawtonicroscales are very
much separated.

Given a set of macroscale values at the macroscale gridspdiiif }, at then-th time
stept,, = nAt whereAt is the size of the macroscale time step, patch dynamics ctaspu
the update of these values at the next macroscale time{if§¢1}, using the following
procedure:

i) Lifting: From{UJTL}, reconstruct a consistent microscopic initial data, deddty
uQ-.
i) Evolution: Solve the original microscopic model with this initial datgover the
small domains (the “teeth”) for some tind& a5, = Sstig.
iii) Restriction: Average the microscale solutiary; over the small domains. The
results are denoted by/z }.
iv) Extrapolation:Compute the approximate derivative and use it to pre{djf(ﬁ“}:

(7) U7L+1 _ Un + At U(§t -ur
ot
or more generally:
(8) Un,+1 = U™+ At Ug‘ — ~(1)}5t
(1 —a)dt

wherea is some numerical parameter between 0 and 1.

There are very few examples of how to implement these stepsaictice. [17, 24]
suggest the following:
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For the lifting operator, in the small domain around the roagnid pointz;, use the
approximate Taylor expansion:

N
9) ZE x—arjk
k=0

Here D, is some approximations to the derivatives of the macroguadéile atx;, for
example:

no UM 4 U
10) Dy= 2 2 I
(10) D >

Below we will consider the case when= 2.

When solving the microscale problem, [24] suggest extenttia microscale domain to
include some buffer regions in the hope that this would atloevuse onyboundary con-
ditions for the microscopic solver: By choosing sufficigriirge buffers, the effect would
be as if the microscale problem is solved in the whole spaarevlind when averaging is
performed. This introduces another spatial sd@levhich is the real size of the region on
which microscale problems are solved. (The paramegtahich is (much) smaller thaf,
is the size of the domain over which averaging is performidhe following discussion,
we will take H to be infinity.

Let us now examine this algorithm in more detail, using somg/ simple examples.
Let us first consider the heat equation

(11) dru = 9u
For simplicity, let us assume; = 0. Denotety = Dy + Dz + %DQZL‘Q. We have

Un
J+1
) Dl =

n 1 2
2AL S Do=Uj 51 P2

(12) Ssttig(x) = Do + Drx + Dz( 2 + ot)

Denote by A, the averaging operator over the small domain (of sizeve have
(13) UZ = AnSsitio(x) = Do 4 Dadt + 55 D2h2 U™ + Doét
Inserting this expression in (7) gives the familiar scheme.

(14) U™t =U" + AtD,

as was shown in [17]. This is both stable and consistent withheat equation, which is
the right effective model at the large scale.
Now let us turn to the advection equation

(15) Oit 4 Ozu =0

In this case, we have

(16) Ssitio(x) = Do + Dy (z — 0t) + %Dg(x — §t)?

Hence,

(17) UL = ApSsiiio(x) = Do — D16t + %Dzaﬁ + 21—4D2h2 = U™ — D16t + %Dg(sﬂ
and (7) becomes

(18) Ut =U" + At(—D; + %&Dg)
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Sincedt < At, the last term is much smaller than the other terms, and wketiressen-
tially with a scheme which is unstable under the standard @¥idition thatAt ~ Ax:

(19) Ut =um — AtD,

due to the central character b .
Aside from the stability issue, there can also be problentls eonsistency. Consider
the following example:

(20) Dy = —0tu

The macroscale model is obviously the same model. Howenisreasy to see that if we
follow the patch dynamics procedure with= 2, we would be solvin@;U = 0, which is
obviously inconsistent with the correct macroscale model.

For these simple examples, the difficulties discussed abanée fixed by using dif-
ferent reinitialization procedure for the micro-solveFar the example of the convection
equation, one should use one-sided interpolation schantks spirit of upwind schemes.
For the last example, one should use piecewidgeorder polynomial interpolationBut
in general, finding such a reinitialization procedure seetmde quite a daunting task,
since it depends on the nature of the unknown effective reeai® model Imagine that
the microscopic solver is molecular dynamics. The reiliitéion procedure has to take
into account not only consistency with the local macrostatiethe system (which is the
only requirement for the extended multi-grid method and Hyibut also the effective
macroscale scale model (which is unknown) such as:

i) The order of the macroscale equation.
i) The direction of the wind, if the effective macroscaleuatjon turns out to be a
first order PDE.
iii) Other unforeseeable factors.

Indeed it is not at all clear how patch dynamics would work dletular dynamics models
are used to model macroscopic gas dynamics.

4. CONCLUSIONS

The idea of interrogating legacy codes as a control systeerisattractive and to some
extend, has already been commonly used in some disciplifwsexample, chemists use
packages such as CHARMM and AMBER as legacy codes to perfptimization tasks,
e.g. to find free energy surfaces and minimum free energysp&thtimization techniques
such as the Nelder-Mead algorithm that use only functiones(not the derivatives) were
designed with this kind of problems in mind. One purpose efwlork of Kelleret al. is
to extend bifurcation analysis tools to systems that arendéfby legacy codes [25]. The
“equation-free” approach attempts to extend such practicenother direction, namely
the modeling of macroscale spatial/temporal dynamics stiesys defined by microscopic
models, in the form of legacy codes. While this seems vergétive, the set of tools pro-
posed under this umbrella are quite far from being suffidiemnteaching this objective. We
have discussed some of the technical difficulties in thie ndhis discussion is certainly
not exhaustive. It is only meant to be illustrative.
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